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The theory of first-, second-, and third-order Raman scattering is investigated 
for isotopically disordered anharmonic crystals. The theory of time-dependent 
thermodynamic Zubarev Green's functions is adopted to obtain the Raman 
tensor, intensity of Raman lines, and differential cross sections of various orders 
of scatterings. It is observed that each class of scattering can be separated into 
diagonal and nondiagonal parts. The first-order and nondiagonal parts are absent 
in the case of chemically pure crystals. The diagonal parts are separated into 
anharmonic and interference terms. The interference terms arise due to the inter- 
actions of anharmonic phonons with the local phonons. The temperature and 
defect dependencies are discussed in detail along with the nature of continuous 
and line spectra. It is proposed that very high-power laser sources will reveal the 
third-order spectra, and that the resulting structure can be explained with the 
help of temperature-dependent one-, two-, and three-phonon density of states. 

1, I N T R O D U C T I O N  

A scat ter ing  m e d i u m  can s imul taneous ly  abso rb  one p h o t o n  and  emit  
a no the r  o f  grea ter  or  smal ler  f requency c o m p a r e d  to tha t  o f  the a b s o r b e d  
one. This  effect is k n o w n  as the R a m a n  effect ( R a m a n ,  1928). The  energies 
o f  a b s o r b e d  and  emi t ted  p h o t o n s  differ by  an a m o u n t  co r r e spond ing  to the 
energy difference be tween two q u a n t u m  levels o f  the sca t ter ing  med ium.  The  
energies o f  p h o t o n s  employed  in such exper iments  are  o f  the o rde r  o f  1-10 eV 
and  are  in te rmedia te  between the energies o f  neu t rons  used in scat ter ing 
exper iments  f rom lat t ice v ib ra t ions  ( ~ 1 0  -2 eV) and  the energies o f  X- rays  
used in di f f ract ion studies (,-~104 eV). In  fact,  R a m a n  scat ter ing by  lat t ice 
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vibrations in crystals is the inelastic scattering of photons caused by the 
fluctuations in the electronic polarizability of the crystals induced by the 
displacement of atoms from their equilibrium positions (Born and Huang, 
1954; Loudon, 1964; Maradudin, 1966). 

The measurements of Raman spectra have been a valuable tool in the 
investigation of vibrational and rotational energy levels of molecules and in 
the determination of lattice vibrational frequencies of crystalline solids. In 
crystals the incident light quantum is inelastically scattered and a change in 
energy is involved in creation or destruction of one or more phonons. First- 
order Raman (FOR) scattering due to the creation and annihilation of single 
optical phonon at the center of the Brillouin zone unambiguously identifies 
these phonons. In the FOR scattering the incident light photon is absorbed 
and the crystal makes a transition from the initial electronic and vibrational 
state I i i , , ~e~o) to an intermediate state [~e~v). Subsequently the crystal 
makes the transition to the final state [ ~f~oY), which differs from the initial 
state by one phonon, by emitting a secondary photon. Conservation of 
energy and momentum requires that only those optical modes can scatter 
light in the first-order processes which have nonzero frequencies for zero 
wave vector (k = 0). In other words, only those modes which transform as 
a second-rank tensor under point-group operations will be Raman-active 
(Loudon, 1964; Maradudin, 1966; Russell, 1966). 

Second-order Raman (SOR) scattering occurs due to processes involv- 
ing pairs of phonons of equal or equal and opposite wave vectors. The SOR 
effect provides information directly related to the two-phonon density of 
states (Loudon, 1964; Karo and Hardy, 1967; Benedek and Mulazzi, 1969). 
In the SOR effect two phonons participate in the scattering process. As a 
result of the interaction of light, both the phonons may be created (Stokes 
component) or one may be created and the other destroyed (Stokes and 
anti-Stokes components) or both may be destroyed (anti-Stokes compo- 
nent). The SOR effect gives rise to a line spectrum as well as to a continuous 
spectrum. 

The symmetry of the crystals plays a vital role in the understanding of 
Raman scattering. In crystals of NaC1 or CsC1 structure the FOR scattering 
is completely ruled out and one has to rely upon infrared measurements to 
study the phonon spectrum. The information which can be obtained from 
the FOR and SOR scattering studies of crystals is similar to that from 
infrared measurements. However, in a crystal having inversion symmetry 
the two (Raman and infrared absorption) measurements are complemen- 
tary, i.e., only even-parity phonons and phonon combinations are Raman- 
active, while the odd-parity phonons and their combinations are infrared- 
active. In the presence of impurities in crystals (particularly of NaC1 or CsC1 
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structure, in which FOR scattering is absent) the translational symmetry is 
removed and the forbidden FOR spectrum appears (Hoff et al., 1975; Gale- 
ener and Sen, 1978; Chandrashekhar et  al., 1978; Haque et al., 1977; Mok- 
ross et al., 1977). These impurities can therefore be used as probes to study 
the phonon frequency spectrum in general. The appearance of resonance 
Raman scattering as a result of the presence of a finite concentration of F- 
centers and other color centers is an additional advantage of impurity effects 
(Dick, 1977; Hoff and Irwin, 1974; Renucci et al., 1975; Yacoby and Yust, 
1972; Negi and Ram, 1984; Hase, 1980; Esser, 1978; Trallero Giner and 
Costa, 1985). 

The Raman scattering probabilities are low; a typical value for FOR 
scattering is 1 : 10 6, while that for SOR scattering is 1 : 109. This means that 
to observe the Raman spectrum, a highly intense monochromatic source of 
radiation is necessary. The advent of highly monochromatic laser sources 
has led to a renewed interest in the study of Raman scattering and in particu- 
lar has increased the possibility of definitive measurements of SOR and 
higher-order Raman spectra (Hardy and Karo, 1969; Jaswal et al., 1974; 
Agrawal et  al., 1975). 

In recent years, a wealth of experimental information has been obtained 
on the Raman effect for a variety of crystals. These experiments have pro- 
vided profound information on the optical mode frequencies and linewidths 
of pure and impure crystals (Wallis et al., 1966; Cowley, 1965; Balkanski 
et al., 1983; Hart et al., 1970; Menendez and Cardona, 1984; Wanser and 
Wallis, 1981; Haro et al., 1986). For these modes the line center and the 
linewidth of the scattered radiation are found to vary with temperature. 
Such a temperature dependence ( just  like the infrared absorption) cannot 
be explained on the basis of a harmonic approximation. The temperature- 
dependent phonon frequencies and linewidths can only be explained in terms 
of the anharmonic character of lattice vibrations. It is the crystal anharmon- 
icity which can successfully explain the origin and nature of SOR and higher- 
order [third-order Raman (TOR)] scattering processes. We have found very 
little literature on SOR and TOR scattering in impurity-induced isotopically 
disordered crystals. In the present paper we investigate the theory of FOR, 
SOR, and TOR effects for impure anharmonic crystals on the basis of a 
many-body technique, which is briefly reviewed. 

The organization of this paper consists of the formulation of the prob- 
lem (Section 2), the multiphonon processes (Section 3), the first-order 
Raman effect (Section 4), the second-order Raman effect (Section 5), the 
third-order Raman effect (Section 6), and our conclusions (Section 7). The 
scattering intensity, differential cross sections, impurity concentration, and 
temperature dependence of Raman lines and linewidths are also obtained. 
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The effects of anharmonic interactions, the effects of interactions between 
anharmonic phonon fields and localized fields, are also investigated as a new 
feature of this work. 

2. GENERAL THEORY 

2.1. Raman Tensor 

When the frequency of incident radiation (photons) is far from the 
frequencies of electronic transitions in the crystal, the intensity of Raman 
scattering per unit solid angle is given by (Born and Huang, 1954) 

I(C0R)=(CO4/2ZrC3) Z n~nei~r,~Z(coR)E~E] (1) 
a/3,y)~ 

where coo is the frequency of incident radiation, co = coo + coR is the frequency 
of scattered light with the condition that coR stands for the Raman shift and 
coa < 0 corresponds to the Stokes spectrum (or line) while coR > 0 gives the 
anti-Stokes (Raman) spectrum (or line), n is the unit vector of the one 
linearly polarized component of the scattered light and is perpendicular to 
the direction of scattering, while E § and E -  = (E +)* are the amplitudes of 
the positive- and negative-frequency components of the incident radiation, 
respectively, i~r,~z(C0R) is known as the Raman tensor and is given by 

i~r,e,(co~, ) = (1/2re) dt exp(--icoRt) (Pea(t)P~r(O))r 
too 

(2) 

where the subscript T stands for the time ordering and Pax (t) is the electronic 
polarizability of the crystal. The electronic polarizability for N cells can be 
expanded in a Taylor series which is dependent on the normal coordinates 
U(~lt) of the crystal, in the form (Born and Huang, 1954) 

(kl'~ fkl ) 
Pflz(l) -~- l'flj.~(~ N1/2 2 P f l , ~ j l ) U t j l  l 

kljl 

+(1/2!) ~ Pa~ . U U k2 t 
kljl,k2j2 \Jl  j 2 /  j l l  / \j21 / 

kljl,k2J2,k3y 3 \J l  j2 j3 /  \ j l  / \j2 / \ j3 

+ .  �9 �9 ( 3 )  
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The first term in equation (3) contributes to Rayleigh scattering (elastic 
scattering), the second term to one-phonon Raman scattering (FORS), the 
next to SOR scattering, and so on. Since we are not interested in Rayleigh 
scattering, we shall neglect the first term in equation (3) and the remaining 
terms are 

Pax(k~t= Y~ Pp;~.r(k.~, l~)(mk,)-'/2er(kj~)exp(2Jrik~ . R,~) 
\ J1/ klk,r \ Jl 

()= (klk2) p~,~ ki., k2 ~ Paz, ra . . , 1112 (m<mk2) -1/2 
J. j2 kljl,k2j 2 \ Jl J2 r,~,tl 

x er(kl]ea(k2)exp[2rci(kl.R,~+ k2 �9 R,2)] 
\ j l /  \ j2/  

(4a) 

(4b) 

and 

with 

kl k2 3 = ~ Pt~,ra . . . .  llU3 
PP'\j1 J2 J3 / ~jl,~2j2,k3j3 \J l  j2 J3 

?.",6,o" l1,12 

x(mk~mkzmk3)-l/2er(k~)ea(k2)e,,(k3) 
\Jl /  \J2/ \J3/ 

x exp[2zci(kl �9 Rl, + k2" Rl2 + k3" Rl3)] (4c) 

p ~..~., .[k~, l,t = [apB~/OU~(kl)7 
\ J l  / L \ J l / A  0 

P~,~(jk l' 
kt k2 

Pp~,r6o jl j2 

(Sa) 

k 2, ll12):[02P~x/OuT(klt Ou6(k2)] (5b) 
J2 k \ J l  / \J2/A 0 

k3,, lll213):[~3",A/OsT(kl 1) OS6(j k2) ~Uc~(~3)l (5c) 
J3 J3 d 0 

and so on, defined as coefficients of expansion. 
Substitution of equation (3) in equation (2) followed by second quan- 

tized normal coordinate transformation yields 

i~r.~x(coR ) _ .(1) .(2) .(31 - l~r,az(COR) + t~r,r + t~r,e,(COR) (6) 
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where 

.(2) 
lar,pZ(fOR) = (1/2~r) 

i~9,PZ(rOR)-=(1/2~) E E dtexp(--icoRt) "(') {kl k[] *,~r,,zk j, j] / 
klJl k'ljl oo 

X (Akl j , ( t )Akt j ,1(O))  

2 ~" dt exp(--ir0Rt) 
kljl,k2J2 klj'l,k~j~ --cc~ 

and 
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(7a) 

X~ (kl k2 k] k')2 
*~r'PX~jl j2 j~ j;/(Ak~s~(t)Ak2j~(t)Aku'~(O)Akij~(O)) (7b) 

.(3) lar,3z(O)R) - -  (1/2~) 2 2 dt exp(--iC0Rt) 
kljl,k2J2,k3J3 k'lji,k~j~,k'3j~ oo 

M D(3 ) (k l  k2 k3 k~ kl k; / 
*ar'pZ\jl j 2  j3 j l  j'2 j ; }  

x (Ak,j~(t)Ak2h(t)Ak3j3(t)Ak,;,(O)Aaji(O)Aksjg(O)) (7C) 

In obtaining equations (6) and (7) we have ignored the contributions from 
equal time correlation functions. The various coefficients appearing in 
equation (7) are given by 

~r,~z\j~ "/=(n/2M)A(k~ 
Yl \JlZ \ j2/  \j~ Ij~' 

x[m(k']co(k[)]-l/2exp[2zci(k,  § �9 Rh] (8a) 
k \ j l /  \ j ] / J  

e(2) (k, k2 k~ k;] 
ar,3:q . ., ., 

\J~ j2 J~ J2/ 

, , ,  {kl~ {k2~ {k~ {k'2'~ 
=(h/4MN)ZA(kl  + k2 + k[ + Kz)e~ jt )e l  j2)e[ j~)e~ 

(kl k2 k~ k~ -) 
x P,z,r~ . . , 1112 .,, I~l~ 

\J1 J2 Ij~ J2 

• I f _ D ( k l ) o ) ( k 2 ) o p ( k ~ ) ( D ( k 2 ) ?  -1/2 

k \ j l J  \ h i  \ j ] J  \jl2J-] 

x exp{2~i[(kl + kD" R,, + (k2 + kl)" Rt2]} (8b) 
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and 

{k, k; / 
~r'~x~jl j2 j3 j~ j~  j ' 3 /  

( t i / 2 M N ) 3 ( 1 / 6 ) Z A ( k l + k 2 + k 3 + M + k ~ + k ~ ) e ( k l )  (k2)(k3 / = e e 
jl ~j2/ ~j3J 

(k'] (k'] (k') ( k3,lllzl 3 k] ) l 2 3 kl k2 k~ k[ 
• e e e P/~,~o~ . [ . . . . . .  , I~l~l'3 

\ j ] /  \ j ~ /  j'3 \J1 J2 j3 J l  J2 J3 

x [ ( o ( k ' ] c o ( k z ] c o ( k 3 ] c o ( k i ] c o ( k 2 ] m ( k ' 3 ) ]  -1/2 

L \ j l J  \ J '2 /  \ j 3 /  \ j i /  \ j ; /  \ j ' 3 / J  

x exp{27ri[(k~ + kl). R,~ + (k2 + k~)" Rt~ + (k3 + k;)" R~]} 

where 

and 

kt k2 k] k~ ) 
P/~,7 . . . .  . . . ,  1112 . . . . . .  l~l~ . . . 

\J l  j2 Ij~ j~  ' 

k l  k2 . , 1 1 1 2 . . .  Pp:~,r . . . . . .  . . . , l]I~ . . . 
= P a z ,  r. . . \ j l  j2 "" / \ J1  J2 

A(k)=~l if k=0, or reciprocal lattice vector 
l0 otherwise 

(8c) 

The correlation functions 

( Akl j l (  t) . . .  Aklji(0) . . . )  

appearing in equations (7) contain the entire physics of Raman scattering 
and the evaluation of these correlation functions will be carried out in the 
following sections. The problem of one-, two-, and three-phonon bound 
states will also be investigated from these correlation functions. 

2.2. Differential Cross Section for Raman Scattering 
The differential scattering cross section per unit solid angle per unit 

frequency interval for Raman scattering is given by (Cowley, 1964; Dick, 
1985) 

( d 2 c r / d ~  df0R) = (C0/C) 4 Z nanai~7,Pz(c~ (9) 
uPr~ 
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where m are the unit polarization vectors of the radiation. Evidently, the 
differential cross section depends on the Raman intensity tensor 
i~r.,~(a~R), which will describe the one-, two-, and three-phonon differential 
cross sections for Raman scattering in the following sections. 

3. THE MULTIPHONON PROCESSES 
To investigate the multiphonon processes in order to explain the various 

orders of Raman scattering, we start with the Hamiltonian of an impurity- 
induced anharmonic crystal. The Hamiltonian in such a case can be 
expressed as the sum of an  unperturbed (harmonic) Hamiltonian H0, an 
anharmonic Hamiltonian (Pathak, 1965; Semwal and Sharma, 1974; Indu, 
1990) HA, and a defect Hamiltonian (Indu, 1990; Sharma and Bahadur, 
1975; Sahu and Sharma, 1983) HD and is given by 

H=Ho+ HA + HD (10) 

where 

and 

Ho= (fi/4) ~ co(k} (A~Akj+{~ B~Bkj) 
�9 kj \ j /  

Here 

(11) 

c(kl k2) and O(kl k2) 
\ j l  j2 \ j l  j2 

describe the mass and force constant change parameters, respectively 
(Pathak, 1965; Semwal and Sharma, 1974; Indu, 1990; Sharma and 
Bahadur, 1975; Sahu and Sharma, 1983). 

The correlation functions appearing in equation (7) are the direct 
consequence of the double-time thermodynamic Green's functions (GF) 

denotes the anharmonic coupling coefficients and 

k2 ks.) 

k,j,,k2j2 L ~j, j2 )8~1jl 8~2j2-- 1) [j, S2 

k 2   slAklj k2j2 Ak 
s>~3 klJl,k2J2,...,ksjs J2 ds / 
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(Zubarev, 1960). Hence, it is essential to evaluate the Green's functions 
for our purpose. To investigate the first-, second-, and third-order Raman 
scattering, let us consider the evaluation of one-, two-, and three-phonon 
GFs, 

Gl( t, t') = Gkj~,;( t-- t') 

= ((Akj(t) ; Azj.,(t'))) (14) 

G2( t, t') = Gk,j, k2j2~tjil,~i~( t-- t') 

= ((Ak,s~ (t)Ak2j2(t) ; Aku~(t')A~ji (t'))) ( 15 ) 

G3( t, t') = Gk,j, k2 i:k3j3kljik~j~k~jS( t-- t') 

= ((Akjl(t)Ak2j:(t)Ak3j3(t); Az~ji(t')Akij~(t')A~js(t'))) (16) 

respectively, with the help of the Hamiltonian (10), using the equation of 
motion method of quantum dynamics (Semwal and Sharma, 1974; Indu, 
1990; Sharma and Bahadur, 1975; Sahu and Sharma, 1983; Zubarev, 1960). 
The one-phonon Green's function can be evaluated in the form (Indu, 1990) 

Gksz;(o)+ie)=Tr-~co(k),kjk,;[co2-o52(k)+2ico(k)Fkj(co)l  -~ (17) 

where e is a small value and the perturbed mode frequency c5(~) can be 
expressed in terms of renormalized mode frequency oS(y) as 

~2 (k)  = a52 ( k / +  2co(k)Akj(co ) \ J /  (18) 

and 

qkJkT'=~kk'SJJ'+4C(~ k j'/Ik't/co(kt\j) (19) 

Akj(c0) is the phonon frequency shift, which describes the real part of the 
phonon self-energy (Indu, 1990) p(~k,;,co +ie)  and Fkj(o) is the phonon 
linewidth at the half-maximum and is derivable from the imaginary part of 
the phonon self-energy. 

The evaluation of two- and three-phonon Green's functions using the 
Hamiltonian (10) is quite complicated, but the evaluation of these GFs can 
be made easily with the help of the equivalent renormalized Hamiltonian 

t kd 
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Writing the equations of motion for Gz(t, t') and Gift, t') given in equations 
(15) and (16) with the help of equation (20), performing the Fourier trans- 
forms, and solving these equations for G2(a 0 and Gffco), we obtain (Semwal 
and Sharma, 1974; Indu, 1990; Bahuguna et aL, 1991) 

c=(.)----(6"V2.)o, 
u=• \ j l / A L  k i l l  

L h i l l  \121) A 
(21) 

and 

G,(c~ Z II+pn(k~)n(k21 
u=:~l \ j l /  \ j 2 /  

k3 k3 kl 

L. J1 J2/ J3 _1 

[ tCl C) (117' X (,0 2 -  0.~ kl +uch k2 +[./(.3 k3 
L k j l l  hi2~ hJ3/)  A 

j \ j2 / )  

\ jl / j3 
(22) 

with 

(~(2) -~ 5123 + 5231 .~_ 5321 

5,23 = &,z~Gj~( 5<k~G:~&,~Gi~ + &~Gj~&,k~Gj9 

~-~ \J~/ \i2/"" \jr \j~/ ~j2 "'" 

(23a) 

(23b) 

(23c) 

(23d) 
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In equation (22), 

\J, / \ h / )  
and 

represent two further terms which are obtained by interchanging 

o3( k' ) and o5(k2 / , and o5 (kl) and ch (k:) 
Jm \ J2 ]' 

in the preceding term. 
The response function in the lowest-order approximation can be evalu- 

ated in the form 

kt o) 

~j,zr \J, J \J~ J 

+ E E 
kljl,k2J2 kijl,k{~j~ 

( ?) k, k2 - k  V3 ki k; G2(co) x V3 jl j2 j / \ j l  j~ 

+327v E E 
kljl,k2J2,k3j3 kljlk~j~k~j~ 

kl k2 k3 k '  ' 
x V4 jt j2 j3 J V4 J~ j'2 j'3 (24) 

where 

\jl A /  L \ A l l  \jl/A \ j l  12 J1 j2 

-kl  21D { 2 kz k +4 Z C co (25) 
~J~ j, j~} \ j'2 j2 j 

An explicit expression for p(~ J',k' co) can be obtained in the form 

P j , ,  co + ie = Akj(co) - iFkj(c0) (26) 
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F~J(~ E R( -k  k l /R(-k  -kl)("o(k'/ 
k,ji j jl/ \ j J1 / \jl / 

X ~E(D2--O~2(kltl 
\j~/J 

r~(co) = r~O)(o~) + rg)(o~) 

vfk'l k2 -k\/ /[-kl 
F(~)(co) = 18/r g(co) 

lqjlk2j2 ~ jl j2 j /V3\ jl 

L j2/ j~ L \ j l /  \j2/J 

x 5  co 2 -  o5 kl +05 k2 
L ( \jl \j2/) J 

L \ j2/ \ J'1/JL \ J'l/ \ J 2 / J "  

L J~ j2 

F~}r ~ V4 lq k2 k~ 
ktJhk2j2,k3j 3 jl j2 j3 j 

( -k l  -k2 -k3 -k)  x 
V4\ jl j2 j3 j 

-k2 -k) 
j2 j T]I 

\ j l /  \ h  \ h /  j3 \j3 \jl J 

• [o5 (k'/+ o3 (k2) + as(k3]l 
\ j l /  \j2/ \j3/J 

L \ j l /  h j3 /J )  

\ j l /  \ j2/  \ j2/  \j3 -- j3/ j l /J 

93 

(30a) 

(30b) 

(3oc) 
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X ~{(-'02 -- IO'~ (k'l) - ~ ~ 2 } [ -  J1 \J2/ 

o9 k3 

k,j, j j, / \ j Jl 

(30d) 

(30e) 

In equation (29), P denotes the principal value of the quantity and 
e(co)= 1 for co>0 and = - 1  for co<0. 

The various correlation functions appearing in i~r,a~(COR) can be 
evaluated from (Zubarev, 1960; Plakida and Ivanov, 1980; Plakida and 
Sikl6s, 1978; Morita and Tanaka, 1965; Lee and Hui, 1967) 

F(k~)Zj,(t, t') = J(k~)gV-,(o9) exp[--io9(t- t')] do) 

where 

(31) 

F (  i) I ,  
kjkT't t, t ' )  = ( A k , j t A k 2 j 2  . . . A k , j , A k l j l  A k ~ s ~  . . . A k , d , , )  (32) 

and J~k}{7'(og) are known as spectral density functions, given by 

(i) Jkjk'j'((O) = - -  {2/[exp(flhog) - 1] } Im Gi(o9 + ie )  (33) 

4. FIRST-ORDER RAMAN SCATTERING 

The use of equations (31)-(33) in equation (7a) yields 

i(~,~(OR) = (2/~) ~ dt  exp(-R0t) 
klJl ,kij'l 

X l a r ' ~ ; ~ \ j l  J l  ~ - o o  J 
., / rlkjk~'09 exp(icot) Fkj(og) 
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The integrand 

k 2 - 1  

describes the phonon frequency spectrum in the whole range of  frequency. 
If  the linewidth is vanishingly small, the integrand tends to a delta shape 
distribution ro(~) fi[ro 2 - &2(~)] in the Breit-Wigner expansion. In the limit- 
ing cases where the linewidth is small enough but finite, Fkj(Co)<<C0(y), the 
integrand has a steep maximum at ro = &(~), provided that aFkj(r.0)/&o << 1 
and OAkj(co)/&o<< 1. If  it is assumed that in the vicinity of  co_~g~(~) the 
linewidth varies slowly with co, i.e., Fkj(C0)= Fkj[rS(~)], then the integrand 
exhibits a Lorentzian line shape distribution with its maximum at co = 
c5(~). If  the variation of  widths and shifts with co is taken into account, then, 
apart from the nature of  combination bands arising as a result of  anharmon- 
icities, new delta-function peaks will appear and the band shape will be 
changed. For values of  co in the immediate neighborhood of  & (~) with small 
enough Fkj(ro) the integrand may be written as 

2+(>,+~176 
where 

- 2  

<5 k =~r_ 1 (.02__ ~176 (/ I (35) 

The first-order Raman tensor can be separated into diagonal and non- 
diagonal parts as 

�9 (1)  _ .1 d or - . l , n d  (36) 

where the superscripts d and nd indicate the diagonal and nondiagonal 
parts, respectively, and these are given by 

and 

' ar,pz((-oR) = (2/7:) s "~r,ea~j j j 
k/ 

(37) 

o0) {k k'~ [ -k  k"~ [k~ +) lj /)%)1 
kj g=k'j' 
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Here the integral 

Painu l i  et aL 

11 = n(ro)D co, ~o Fkj(r do) (39) 
oo 

describes the order of scattering as per the nature of Fkj(r Making use of 
equation (30a), we can obtain the FOR tensor in the form 

�9 (1) d,d + q,nd 
l a r , f l z ( O ) R ) F O R  la y,fl X ( (OR)FO R "~- l ay,flX(OJR)FO R 

where 

and 

with 

(40) 

l ay,fl;~((.OR)FOR-- 8 2", ay, f lZ~ . 
ky \ J  j ~  \ j  j~ \ j  j 

k o k n k D  ro k ,  (41a) 

�9 1,rid 0 1, 
Z~r,eX(C0R)FOR-----32 Z --~r,ez\j J' C 

kj,k'j' j ' 
ky#k'j" 

j /  \ j  j '  ) 

(41b) 

The nondiagonal part is significant in impure crystals because this term 
chiefly depends on the mass difference parameter and vanishes in the case 
of pure crystals. In obtaining equation (41), only the phonon frequency shift 
F~(r generated by the localized interactions is used. The other frequency 
shifts cannot produce a FORs and will be discussed in the following sections. 
Before going into the details of impurity-induced FORs, let us examine the 
possibilities of FORs in pure crystals. 

In diatomic polar crystals (NaC1, etc.) the vibrational modes are of two 
types, namely: the even-parity or symmetric modes and the odd-parity or 
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antisymmetric modes. In the former the motion of only one kind of ion is 
involved and these modes are designated by Ag (nondegenerate), Eg (doubly 
degenerate), and Fg (triply degenerate) symmetric modes, while in the latter 
the motion of both kinds of ions is allowed and these odd-parity modes are 
designated by Au, E,, and Fu antisymmetric modes with respect to the center 
of inversion. In the case of pure crystals the selection rule k = 0 must inevit- 
ably be followed. The FORs for pure crystals cannot be studied with the 
help of the present formulation without some substantial approximation. 
The GF for this case should be developed by retaining only the unperturbed 
(harmonic) Hamiltonian H0 in H. This formulation based on the harmonic 
approximation can be found in the literature (Born and Huang, 1954; 
Benedek and Mulazzi, 1969; Negi and Ram, 1984; Cowley, 1966). The use 
of harmonic GFs in equation (7a) shows the presence of Stokes and anti- 
Stokes lines with Raman shift (DR, i.e., [(Do-co(~ gives the Stokes lines 
and [coo+ (D(~)] produces the anti-Stokes (Raman) lines. It is notable here 
that the nature of even- or odd-parity modes changes the form of harmonic 
GFs. 

The diagonal term (41a) can be studied in more detail for isotopically 
disordered crystals. The FOR spectrum consists of spectral lines with fre- 
quencies of anti-Stokes lines COo+O~(~ and of Stokes lines (D0-(D(~). Here 
the wave vector selection rule k = 0 is not a necessity, due to the removal of 
the symmetry of the crystals. Since k = 0, optical modes are no longer exact 
eigenstates of the crystal Hamiltonian; the incident light radiation then 
couples to all the modes of the host crystal. The FOR scattering therefore 
produces a continuous spectrum rather than a line spectrum as for perfect 
crystals (Maradudin, 1966; Yacoby and Yust, 1972). Also, according to the 
present formulation, the FORs appears only due to the localized modes, 
which do not exist in the pure crystals. The local mode frequency may even 
lie in the acoustic band of the host crystal, depending on the nature of the 
impurity (Behra and Deo, 1967; Tripathi and Behra, 1974; Behra and 
Tripathi, 1974; Borovik-Romonov et al., 1976). Evidently, the FORs in 
doped crystals may be observed even in the acoustic region of the host crystal 
with some specifically defined even- or odd-parity modes (Negi and Ram, 
1984; Mills et al., 1969; Pershan and Lacina, 1969; Harley et al., 1971; Hoff 
and Irwin, 1974; Mokross et al., 1977). In all crystals where the impurity 
substitutes for one of the host ions without generating any vacancy, the 
even-parity modes A~g, Eg, and F2g give rise to the FORs in the usually 
forbidden region (Kravitz, 1970; Harley and Walker, 1970), e.g., KC1 :T1 § 
RbC1 :F-centers. If the impurity does not go to the substitutional site and 
create a vacancy, then both the translational and inversion symmetries are 
broken. In such cases (Radhakrishna and Sai, 1971) even the odd-parity 
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modes contribute to the FORs. For example, in RbC1 :Cu and KI :Pb the 
Ag, Eg, and F2g symmetric modes and F1, antisymmetric modes give rise to 
FORs. 

The general trend of temperature and frequency variation of the first- 
order Raman tensor is contained in the functions (hereafter called the 
Raman intensity factors) 

where 

I(r = I n ( k ) +  1)(c0)  (42a) 

I(O~)s= n(k)F(co) (42b) 

F( co) =fcoz[Al(1- f )co2 + Az] [co2 - ~o2( k)] -2 (42c) 

Here A1 and Az are parameters and f is the impurity concentration. The 
subscripts AS and S stand for anti-Stokes and Stokes components, respec- 
tively. Equations (42) are obtained from equation (39) after evaluating 
F~((o) in the form (Indu, 1990) 

a~ 

To indicate the continuous nature of the FORs, we have calculated 
the Raman intensity factor (Russell and Loudon, 1965) for CaWO4. The 
coefficients A1, A2, and f a r e  taken as parameters due to the lack of various 
constants. Sharp peaks are found at Bg 86 cm -1, Eg 118 cm -1, Fg 196 cm -1, 
Ag 210 cm-l ,  Eg 281 cm-1, Ag 334 cm-1, etc., and the continuous spectrum 
is shown in Figure 1. It is evident from Figure 1 that the intensity and 
broadening of Stokes lines is more persistent than that of anti-Stokes lines. 
The temperature dependence of the Raman intensity factor is shown in 
Figure 2. It is clear that the Stokes components show a drastic variation at 
low temperature, whereas the anti-Stokes components are comparatively less 
sensitive. 

After substitution of equation (41) into equation (9) with appropriate 
simplifications, one can very easily obtain the FORs differential cross section 
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in the form 

( d2 a / d~ dfOR) = ( d2 a / d~ dooR)I'd+ ( d2 a / df~ d(.OR) l'nd 

where 

and 

(44) 

(dZa/df~ &0R) l'a= (C0/e) 4 Z n,~npmTm~ i1't~r3z(~ (45a) 
aflyZ 

. l ,nd (d2a/dD dooR) l'~a= (co/c) 4 ~ n~n~mrmzl,~r,p~(cOR)FOR (45b) 
a/3y.~ 

5. SECOND-ORDER  RAMAN P R O C E S S E S  

The second-order Raman tensor is given by 

= l ar,fl;t(O)R)SOR + l ar,fl;t((-OR)sOR + i(2r),flZ((-0R)SOR (46) iar,flZ(O)R)SOR .l.d .l,nd 

where the first and second terms of  the SOR tensor are obtained from 
equation (34) for these processes in which two phonons contribute in the 

(3) inelastic scattering processes via Fkj (CO) and are given by 

. l d  l ~;r,~(C0R)SOR 

k j , k l J l  , k2 j2  
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and 
�9 l , n d  

72 2 
kj,k T 

kj ~k'3"' 

with 

c~(~) - (k~ 
~ klk2k-- V3 jl 

kt 

k2 -k~ f -k l  -k2 - k )  
j2 j )V3~ jl  J2 j "1 

r ~ 2kS1(/3) 
j '  J 

(48) 

(49a) 
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k~ 

+ S_j~_,,{D leo_a, ~ (k ) ]  + e(kl{D[c0_a, c5 (k:)]}  (49b) 

O~(1) _C( 7 k l ] c ( - k  - k ~ \ / o ) 2 [ k ' ~  =63(kl)4-o3(k2) (49c )  
j l /  \ j jl )//1 ~ )\j/; CO• \ j l /  j2 kk~ -- 

S• = S• and S• = n ( k 2 ) 4 - n ( k ~ )  (496) 
\ j2 / \ ja / 

i(2) i .  The third term ar,pZtwR)SOR emerges from equation (7b) due to the 
fluctuations in the second-order electronic polarizability and can be obtained 
as  

0(2) [kl  k2 - k l  -k2~ 
i(2)~r,/~ZtwR)SORZ, x =(1/2zg 2) ~ l~r . ,Z/  . }rh 

ku, k2j2 \al j2 jl j2 

• (s+~fi+~ + s_,~_=) (50) 

Loudon (1964) inferred that SOR scattering can be divided into two 
classes, i.e., the line spectrum and the continuous spectrum. The line spec- 
trum occurs due to the processes in which light suffers two successive FORs, 
while the continuous spectrum occurs due to the processes in which the 
light interacts with a pair of phonons in a single event. Also, the scattering 
efficiencies for SOR scattering increase with the crystal size. Born and 
Bradburn (Born and Bradburn, 1947) state that SOR scattering takes place 
due to the involvement of second-order terms in the electronic polarizability. 
Several authors (Agrawal et al., 1975; Laplaze, 1979; Liarokapis et al., 1985) 
have studied the SOR scattering in the same framework. They found that 
SOR spectra are continuous since they involve the excitations of all possible 
combinations of two phonons with equal and opposite wave vectors. The 
intensity of any given combination is weighted by a coefficient which is 
expressible in terms of a second derivative of Pa~ (t) with respect to the pairs 
of nuclear displacements. These arguments can be modified here. The SOR 
scattering not only depends on the second derivative of electronic polariz- 
ability, but also on its first derivative, i.e., the SOR tensor consists of three 

-1,d il,nd tO 9 ,~ .(2) terms, laT,flA((-OR)SOR, cty,flZk RISOR, and lay,flA(OJR)SOR , of which the first 
two terms come from the FOR-type excitations, while the third term appears 
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from pure SOR excitations [involvement of second derivative of Ppx (t)]. 
i (2)  r(.0 -~ The ~r,~xt RJSOR term is purely anharmonic and is mainly influenced by 

the temperature-dependent distribution function contained in S+ ~ ~-type 
terms. The use of wave vector selection rules shows that this term displays 
continuous structure. At the same time the diagonal and nondiagonal parts 
�9 l,d n i I nd t=r,~z(O~R)soR a d ~r,~z(O~R)soR appear as a result of the cubic anharmonici- 
ties involved in the fluctuations of the first-order electronic polarizability 
and the interfering cubic anharmonicities in the localized fields. For this case 
the wave vector selection rules exhibit a line spectrum. These terms are 
heavily influenced by the temperature term S~(fl), mass difference terms, 
and cubic force constants. The uncertainty involved in the forms of 

-k2) - k  v(2) {kl k2 -k l  vO) {k and 
~ar,OZ\j  j a aT'B~\jl j2 Jl j2 

does not cause any significant source of error, but an approximate evaluation 
of the two-phonon density of states (Loudon, 1964; Russell, 1966) will cause 
severe alterations in the results. It has been observed (Indu, 1990) that the 
density of states is no longer independent of temperature, and the SOR 
spectra are automatically affected by it. The general theory of crystal spectra 
including anharmonic effects predicts no selection rules for the overtones or 
combination and difference bands. However, factor group analysis can be 
regarded (Born and Bradbum, 1947; Born and Blackman, 1933) as a very 
rough guide for the higher-order spectra, and predicts that: 

(a) The first overtone (which occurs approximately at the double of 
a fundamental frequency) of any normal mode is Raman-active, 
irrespective of the fundamental's activity. 

(b) Any infrared-active and Raman-active fundamental combining 
with a Raman-active mode gives rise to an infrared-active combina- 
tion tone. 

(c) Any Raman-active mode combining with any of the even-parity 
modes always produces a Raman mode. 

These rules are very applicable to the present theory under wave vector 
selection rules. In the case of a chemically pure crystal .l,nd Z~,~Z(C0R)SOR dis- 
appears. All the overtones, combination, and difference bands have different 
frequency and temperature dependences and are dependent on the two- 
phonon density of states, in agreement with earlier results with some 
modifications. 
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The SOR differential cross section can be obtained in the form 

(d2cr/d~ d0)R)SOR : (0J/C) 4 E .l,d n,~na [t a r,az(o9 R)SOR 
aflrZ 

�9 l,.~ ;(2) rco ~ ~ (51) -}- lay,~A.((-OR)SOR "q- 'aT",flZl, R)SORJ 

which can be easily studied with the temperature variations for various 
frequencies, namely: 

\ J l  / J2 \ Jl / 

j ', J2 / a  J1 yl 

6. THIRD-ORDER RAMAN SCATTERING 

After certain simplifications the TOR scattering tensor takes the form 

ia r,BZ((OR)TOR .l,d .1 nd <3) = t ~r,~Z(W~)TOR + t ar,~Z(C0R)TOR + Z~r,~Z(COR)TOR (52) 

where in the first two terms the first-order electronic polarizability is 
involved, but the third term appears due to the fluctuations of the electronic 
polarizability in its third-order derivative; these terms are given by 

-ld t ar,ez(COR)TOR = 48 Z Z 
kj klJl,...,k3J3 

(2) kS2 • ~k,k2k, ( f l )  

�9 ],rid Z~r,~(C0R)TOR-- 192 ~ 
kj, K' j '  
kj # k'j' 

x <7 

,d klo2(k I Pg'r'azlj j / \ j /  

1.a / k  k') 
P~r,t~z~ j 

klJl,...,k3J3 j l  

k"~co/k)~ ( 2 ) S t  a ,  
�9 , )  \ . )  

J J 

(53) 

(54) 

and 

i(~,,&a.(O) R)TOR = (1/2zc 2) 
0(3) {k~ k2 k3 -k~ -k2 

klJl, . . . ,k3j 3 k J1 j2 j3 jl j2 

X q2(S1/~l -~ S2/"~2 "+" S3n3 "~- S4n4) 

-k3 j3) 
(55) 
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where 

with 

and 

Painuli et al. 

(2) (kl i1:2 k3 -k'X [-kl -k2 -~k3 
(~klk2k3k:V4\jl J2 J3 j )V4tjl j2 J3 

S2(e)~- Sll~ll {D[fDl' ~~ ~(lk)lOf(~ ~( jt')] 

"~ 54"4{0[094, (~ (~)l'-t-og~(kl~Of(-04, ~ (~44)]} 

_k) 
J 771 (56a) 

(56b) 

+ + + 

n(k3)n k,   56c, 

(56d) 

vT{~) = [exp(/ThoJ(~,])- 1]-' (56e) 

It is evident from equation (52) that the third-order Raman scattering is .l,d induced by three types of terms, two of which, namely Z~r.0Z(C0R)a-OR and .l,nd t ~r,nX(C0R)TOR, appear due to processes in which light suffers three successive 
FORs; the remaining term, i(~,~Z(C0R)ToR, appears due to the processes in 
which the third-order derivative of the electronic polarizability is encoun- 
tered. It is notable that no second-order derivative is involved in the TOR 
scattering. High-power laser beams will make it possible to observe a large 
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number of Raman lines along with a continuous spectrum. The intensity of 
TOR lines is also affected by the temperature, force constant changes, and 
interfering processes. The various TOR lines with different temperature 
functions may be obtained at the frequencies 

-t-3o5(k'], 4-3o5(k2) +3o3(k3 / :i:c3(-k'), 4-o5(-k') 
\ J l /  J2 ' \ J 3 / '  \ J2 / J3 ' 

.-I- 

(J'); +) 

~176 '\j2/1+__] 

The third-order Raman scattering cross section can also be obtained in 
the form 

(d2cr/d~ d0)R)TOR----- ((-0/C) 4 2 .1,d n~n~[t ct r,flA((-t)R)TO R 
afl~'A 

�9 l,nd -(3) + t ~Tm~(COR)TOR + t~TmZ(C0R)TOR] (57) 

The quartic-phonon frequency linewidth is involved in all the evalua- 
tions of TOR scattering, which reveals the thermal dependence as (Indu, 
1990) 

F~4)(co) ~ coZT 2 (58) 

7. CONCLUSIONS 

We have developed the theory of higher-order Raman scattering 
(including first-order Raman scattering) for an isotopically disordered 
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anharmonic crystal. It is observed that the FOR scattering provides only 
one Stokes component and one anti-Stokes component and is induced due 
to processes in which fluctuations in the first-order electronic polarizability 
are encountered. This scattering is governed by the defect terms only. The 
frequencies no longer remain harmonic but become quasiharmonic. The 
mass difference as well as force constant changes contribute significantly and 
the temperature term exhibits the general nature of the FOR spectrum. 

The SOR scattering is governed by two principal types of terms; the 
first category of terms contribute due to the fluctuations in the first-order 
electronic polarizability influenced by the cubic anharmonic and interference 
terms. These terms are separable into diagonal and nondiagonal parts just 
like the FOR terms. Precisely speaking, these terms arise as a result of two 
successive FOR scatterings of phonons. These terms can again be separated 
into two terms, namely terms involved in purely cubic anharmonic interac- 
tions and those appearing due to the simultaneous involvement of cubic 
and defect terms, i.e., interference terms. The nondiagonal terms vanish 
throughout in case of chemically pure crystals, as they are chiefly contributed 
by the mass difference terms interacting with anharmonicities. The next class 
of terms contribute to the SOR events solely due to the second derivative of 
the electronic polarizability. The SOR terms display a continuous spectrum 
as well as a line spectrum and all the terms (overtones, summation, and 
difference bands) are heavily influenced by the temperature and show differ- 
ent temperature dependence via finite frequency linewidths. These inferences 
regarding line and continuous spectra are in agreement with Loudon (1964). 
The SOR spectrum simultaneously depends on the one-phonon density of 

�9 1,d .1,rid states via l a~,,flZ(fOR)SO R and lay,flZ(O)R)SOR and on the two-phonon density 
i(2) r(_O of states via ar,~z~ RJSOR. 

The TOR spectra can also be divided into two classes. The first category 
of TOR scattering appears due to the involvement of first-order polariz- 
ability which fluctuates due to the quartic anharmonic phonon fields. These 
terms can be separated into diagonal and nondiagonal terms and the former 
can be separated again into two terms: terms arising from the quartic anhar- 
monic frequency widths and those arising due to the phonons interacting 
with local fields. The temperature and defect dependencies of these terms 
cause them to persist in the classical regime, and can be assumed as the 
result of three successive FOR collisions. The second class of terms appear 
as a result of the fluctuations in the third-order electronic polarizability. A 
large number of TOR lines may be obtained in this case, but only with the 
help of a very high-power laser source. The TOR results from the three- 
phonon and single-phonon densities of states. Appropriate experimental 
effort with laser sources should display TOR scattering and reveal new 
structural aspects of crystal physics. 
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